🎨
Generative Art: The Story, It's Uses, and Future
  • Preface
  • Table of Contents
  • Introduction
  • What is Generative Art?
  • Part 1: History
    • 1890s
    • 1900s
    • 1910s
    • 1920s
    • 1930s
    • 1940s
    • 1950s
      • Herbert Franke
      • Ben Laposki
    • 1960s
      • Eduardo Paolozzi
      • Frederick Hammersley
      • Hiroshi Kawano
      • Bela Julesz
      • Charles Csuri
      • Frieder Nake
      • Manfred Mohr
      • Michael Noll
      • Vera Molnar
      • Nam June Jaik
    • 1970s
      • Jacques Palumbo
      • Roger Vilder
      • Larry Elin
      • Vicky Chaet
      • Kurt Lauckner
      • Ruth Leavitt
      • Karen E Huff
      • Joseph Scala
      • Ken Knowlton
      • Ed Manning
      • William J Kolomyjec
      • Patsy Scala
      • Manuel Barbadillo
      • Laurence Press
      • Edward Ihnatowicz
      • Peter Struycken
      • Tony Longson
      • Leslie Mezei
      • Colette & Charles Bangert
      • Aaron Marcus
      • The Algorists
      • Georg Nees
      • Harold Cohen
      • Edward Zajec
      • Aldo Giorgini
      • Miljenenko Horvat
      • John Whitney
      • Christopher William Tyler
      • Lillian Schwartz
      • Hiroshi Kawano
      • Duane Palyka
    • 1980s
      • Jean-Piere Hébert
      • Roman Verostko
      • Mark Wilson
      • Desmond Paul Henry
    • 1990s
      • John Maeda
      • Perry Hoberman
      • Rafael Lozano-Hemmer
      • Casey Reas
      • Golan Levin
      • Camille Utterback
    • 2000s
      • Ryoji Ikeda
      • Cory Arcangel
      • Olia Lialina
      • Aaron Koblin
      • Zach Liebermann
    • 2010s
      • N.E.R.V.O.U.S. Systems
      • Refik Anadol
      • Memo Akten
      • Sougwen Chung
      • Quayola
      • Jared Tarbell
      • Matt Delaurier
      • Dimitri Cherniak
      • Tyler Hobbs
    • 2020s
  • Part 2: Techniques
    • Recursion
      • Fractals
    • Collatz Conjecture
    • Cellular Automata (CA)
    • Cymatics
      • Chladni Plate
    • Delaunay Triangulation / Voronoi Diagrams
    • Fibonacci Sequence
    • Fourier Series
    • Geodesic Dome
    • Golden Angle
    • Golden Ratio
    • Implicit Surface
    • Inverse / Forward Kinematics
    • Laplace Transform
    • Lissajous Curves
    • Medial Axis
    • Minimal Surface
    • Packing Problems
    • Platonic Solids
    • Saffman-Taylor Instability
    • Spherical Harmonics
    • Strange Attractors
      • Rössler Attractor
      • Multiscroll Attractor
      • Lorenz Attractor
      • Hénon Attractor
      • Duffing Attractor
      • Clifford Attractor
    • Superellipse
    • Superformula
    • Travelling Salesman Problem (TSP)
    • Schlieren Imaging
    • Agent-based Modelling
      • Boids
    • Constructive Solid Geometry (CSG)
    • Collision Detection
    • Dithering
    • Flow Field
    • Lloyd's relaxation
    • Ray Tracing
    • Data Structures
      • Spacial Index
    • Signed Distance Functions (SDFs)
    • Wave Function Collapse
    • Natural Processes
      • Growth Algorithms
        • Space Colonization
        • Reaction Diffusion
        • Premordial Particle System
        • Diffusion-limited Aggregation (DLA)
        • Physarum
        • Eden Growth Model
        • Differential Growth
      • Fluid Simulation
      • Hele-Shaw Cell
      • Belousov-Zhabotinsky (BZ) Reaction
      • Phyllotaxis
    • Randomness
    • Noise
      • Worley Noise
      • Wavelet Noise
      • Value Noise
      • Sinulation Noise
      • Simplex Noise
      • Perlin Noise
      • Gradient Noise
    • Shaders
    • Polygon Clipping
    • Physics Engines
    • Particle Systems
    • Marching Squares
    • Marching Cubes
    • Metaballs
  • Part 3: Tools
    • Hardware
      • Plotters
    • Software
      • 2D/3D/AR/VR
      • Live Coding
      • Sound
      • 3D
      • Data Visualization
      • 2D/3D
      • Machine Learning
      • Shaders
  • Part 4: The Future
    • Eco-Materialism
    • Emergence
    • Augmented Reality
    • Virtual Reality
    • Digital Archival
  • References
  • Index
Powered by GitBook
On this page
  1. Part 1: History
  2. 1960s

Manfred Mohr

PreviousFrieder NakeNextMichael Noll

Last updated 1 year ago

Manfred Mohr, born on June 8, 1938, is a groundbreaking figure in the realm of generative art. Hailing from Germany, Mohr initially studied jazz music and worked as a saxophonist before delving into the world of visual arts. Inspired by his fascination with mathematics and algorithms, he began exploring the potential of computers as creative tools in the early 1960s. Mohr's pioneering work involved developing algorithms that generated complex geometric shapes and patterns, pushing the boundaries of artistic expression. His artworks, often composed of precise lines and grids, revealed a meticulous attention to detail and a deep understanding of mathematical concepts. By embracing technology and utilizing computational processes, Mohr challenged traditional artistic conventions and forged a new path in the field of visual art. His contributions to generative art have garnered widespread recognition, and his work has been exhibited in prestigious institutions worldwide, cementing his position as a visionary artist at the intersection of art and technology. Manfred Mohr's artistic journey continues to inspire generations of artists, emphasizing the transformative power of algorithms and computation in the realm of art.

https://www.atariarchives.org/artist/sec27.php